WIKA Company presentation

A strong group. For your success.

WIKA

Part of your business

All around the world - close to the customers

Global presence in over 43 countries

.

10.00

10.00

..............

Our production locations: Germany (HQ), Brazil, China, India, Canada, Poland, Switzerland, South Africa, USA (f.l.t.r.)

10.00

.......

.....

10 10.00 10.00

Our local services

- Sales/stock
- Consultancy, service, customised solutions
- Calibration for pressure and temperature measurement
- Diaphragm seal assembly
- Temperature sensor assembly
- --------------10.00 ----........... 10.00 ------..... 10.00 10.00 10.00 10 10 -----... 10.10 10.00 10 10 10 10.00 the set of the set of the set of 10.00 88.88 10.10 ----ALC: N 10 10 NA 10 10 10 10 ------. 10.00.00.00 10.00 10.10 10.00 10 10 10

..........

> > 10.00

......

10 10 10 10

10.00

11.11

..........

Production

2

100

11 11

Range of products

Unique breadth and depth of product range

Electronic pressure measurement

Electrical temperature measurement

Mechatronic pressure measurement

Mechatronic temperature measurement

Mechanical pressure measurement

Mechanical temperature measurement

WIKA

Part of your business

Diaphragm seals

Thermowells

Level measurement

Flow measurement

Calibration technology

Accessories

Able to meet any challenge

PROCESS

- Power engineering
- Chemical
- Petrochemical
- Oil & gas
- Water, waste water
- SF₆ gas excellence

INDUSTRIAL

- Machine building
- Heating, ventilation, air-conditioning
- Air handling
- Refrigeration
- Technical gases
- Semiconductor

HYGIENIC

- Food
- Pharmaceutical
- Beverage
- Biotechnology
- Cosmetics

Basic Training

Electrical Temperature Measurement

Content:

- Thermometer
- Thermowells
- Transmitter

Samples for industrial temperature measurement

Power engineering

As higher the process temperature, as better the efficiency of the plant

Chemical and petrochemical

• The temperature is responsible for the produced product

Food & Beverage

Sterilization and cleaning of the process

Machine building

Measuring of bearing temperature

Safety engineering

Protection against fire and explosions

Part of your business

Measuring Principles

Temperature measurement is seperated in:

- Contact measuring (e.g., inserting)
- Non contact measuring (e.g. optical IR thermometer)
- Special (acoustic, cristals)

The contact electrical temperature measuring at WIKA will be done in two ways:

- Resistance sensors (e.g. Pt100)
- Thermocouples (e.g. Typ K)

Electrical resistance thermometer

The PT100 is a electrical device, which changes resistance with temperature.

- The Pt100 is a "PTC", a resistant with a "positive temperature coefficient" (temperature is rising → resistance is also rising)
- There are also Pt1000, Pt500 etc. existing
- Another common name for PT100 is also RTD
 = Resistance Temperature Detector

What means Pt100?

- Pt menas platinium, the main material of this sensors
- **100** means100 Ohm at 0° C to DIN EN 60751 (IEC 751)

Mathematical Interrelation

Code/Name/Date

Construction of a industrial RTD

Keramik-Messwiderstand (W)

cm

2 principles and 3 versions

Thinfilm (chip) sensor

- Temperature range : -50... +500 ° C (class B)
- Not fully accepted by chemical industry

Code/Name/Date

Ceramic sensor (platinum wire)

Glass sensor (wire)

 Temperature range: -200 ... +400 ° C (class B)

High price

2-wire-circuit

(Widerstand in 2)

	0	1	2	3	4	5	6	7	8	9	10
-10	96,086	96,478	96,870	97,261	97,653	98,044	98,436	98,827	99,218	99,609	100,000
0	100,000	100,391	100,781	101,172	101,562	101,953	102,343	102,733	103,123	103,513	103,903
10	103,903	104,292	104,682	105,071	105,460	105,849	106,238	106,627	107,016	107,405	107,794
20	107,794	108,182	108,570	108,959	109,347	109,735	110,123	110,510	110,898	111,286	111,673

3-wire-circuit

Good cost/benefit ratio

- No measuring error if the resistance of all wires are identical
- Recommended wire length up to 30 meter
- Standard in electrical measurement
- Suitable for standard trandmitter configuration

4-wire-circuit

No influance of wire resistance

- Wire resistance is fully compensated
- Recommended for wire length over 100 meter

Applications

- Calibration and high accuracy measurement
- For accuracy class A or AA
- For SIL applications

Pro & Cons of Resistance Thermometer's

- Linear signal output
- No compensation circuit required
- In low temperature applications better accuracy then a thermocouple

 \bigcirc

- Limited up to 600 ° C
- In comparison to TC's longer response time
- Possible error by self-heating
- More expensive than a TC
- Mechanical strength not as high as a TC

Thermocouples

How a thermocouple works ?

The thermo-electric effect (Seebeck effect)

A thermocouple never measures the absolute temperature, but always the difference between:

T1

- **T1**: the measuring point (hot junction) and
- **T2**: the basis point (cold junction)

Ungrounded Junction

Code/Name/Date

Characteristic curve of TC's

- Each thermocouple has a different characteristic
- the caracteristic is not linear
- The voltage of the seebeck effect is really small, approx. 0.04 Volt

(The Voaltage of a normal batterie is 40 times stronger)

Accuracy of thermocouples

The standard EN 60584-2

separate thermocouples into different classes

- class1
- Class 2

ASME 230

Northamerican standard

- Standard
- Spezial

Comparison of toleranzen (TYP K) with Pt100 (B)

Colour codes of thermo- and compensation cables

The most popular cable arecodeable and listed in the WIKA equipment catalouge.

Thermocable:

Are made of **identical** material as the thermo couple: + accuracy - cost

Compensation cable

Are made of **similar** material as the thermo couple + cost

- accuracy

Leitungsmantel und Ausführung

- Material: PVC, silicon, teflon, fibreglas
- Armour: yes / no

Why to use thermowells?

- Protection of the temperature sensor
- Protection of the workers and the enviroment
- Replaceability of the sensor during running process

Code/Name/Date

WIKA Thermowell's

Code/Name/Date

Thermowell Lunch and Learn Construction of Thermowells

Shank design of solid drilled thermowells

- Tapered: strong root and fast respone time
- Straight: for highest pressure loads
- Stepped: fast response time

Shank design of fabricated thermowells

- Straight tube (standard)
- Tapered tube 12x2,5 mm to 9 mm for fast response time

Thermowell Lunch and Learn Process Connections

Thermowell Lunch and Learn Construction of Thermowells

Full Penetration Welding

- global acceptance
- use of blind flanges

Partial Penetration Welding

- use in Europe / Germany
- use of blind flange

Screwed & Welded construction

- roots in asian market
- threaded flange with hub

TW40: Special construction for exotic materials

TANTALUM:

- removeable cover
- 12 x 0,4 mm with tube 11 x 2 mm
- 16 x 0,4 mm with tube 15 x 3 mm

EXOTIC MATERIAL

- Washer disc construction (also TW10)
- Wetted parts made of exotic material
- Flange body made of stainless steel

Focus on Oil & Gas TW31 - The manufacturing of solid forged Thermowell's

Flanged & single piece Thermowells machined from forged blanks...full adherence to ANSI B16.5 & essence of ASTM A182....

Code/Name/Date

WIKA

Part of your business

WIKA Part of your business

Forged Grain Structure

Code/Name/Date

Thermowell Lunch and Learn Non Destructive Testing

Standard

Hydrostatic pressure test:

- outside pressure for flanged thermowells
- inside pressure for screwed and weld-in thermowells

Dye penetration test / Liquide penetration test:

surface defects of welding connections

Positive material identification (PMI):

- verification of alloy content
- spectral analysis (OES) oder X-ray Fluorescence (XRF)

Ultrasonic testing and X-ray :

- defect inside welding connections
- check of bore concentricity

Special

Helium leak test:

· leak test of themowells

Code/Name/Date

Thermowell Lunch and Learn Outside pressure testing

Flange to ASME	B16.5:
pressure rating	test pressure in bar
150#	30
300#	85
600#	160
1500#	390

Flange to DIN / E	N:
pressure rating	test pressure in bar
PN 16-40	60
PN 63/64	100
PN 100	150

Thermowell Lunch and Learn inside pressure testing

- Standard test for threaded and weld-in thermowells
- Special for flanged thermowells
- Testing time: 3 min
- Testing pressure: 400 bar

Dye Penetration Test (DPI) Liquide Penetration Test (LPI)

WIKA Part of your business

Surface defect on welding connections

- Methode red/white ("Mat'l Check")
- Methode with ultraviolet light

Thermowell Lunch and Learn X-ray Fluorescence (RFA)

- X-Ray = high energy radiation
- Energy of X-ray stimulate atomes
- Atome radiate a specific radiation
- Specific radiation = Indicator about alloy element in probe

Thermowell Lunch and Learn X-Ray examination

- Internal defect of welding connections
- Full Penetration Welding
- Welds of end caps of fabricated thermowells
- Concentricity of bore

Code/Name/Date

WIKA Thermowell Wake Frequency Calculations What this pictures have in common?

Kármán Vortex Street

WIKA Thermowell Wake Frequency Calculations Principle of VORTEX shedding

WIKA Thermowell Wake Frequency Calculations Oszillation to ASME PTC 19.3-1974

WIKA Thermowell Wake Frequency Calculations What happend 1995 in the fast breeder reactor in Monju, Japan ?

Fig.3 MONJU reactor thermowell after failure

WIKA Thermowell Wake Frequency Calculations Osolation to ASME PTC 19.3-TW2010

WIKA Thermowell Wake Frequency Calculations

Wake Frequency Calculation program PTC 19.3- TW2016

			Proce	ss da	ta							Th	ermo	well d	lata					Calculation res			sult			
	Display detail					<u>.</u>				1.	ţ.	ţ.	10	t	Ť	Ť	Ť	an North Lan Lan Lan Lan Lan Lan								
Selection	TAG-No	Temperature	Pressure	Max. velocity	Med. density	Inner diameter	Dyn. viscosity	Shielded length	WIKA TW Type	Insertion length	Stepped length	Step radius at B	Root radius at A	Bore diameter	Root diameter	Tip diameter	Tip thickness	TW material	Safety fatigue	Safety bending	Safety pressure	Ratio limit fwfinc	Frequency ratio	Result	Optimized length (> 0,710,35 < rma	Note code
All	WIKA description ASME description	Т	Ρ	V	rho	Di	my	SI Lo	ł	U	U _s Ls	Rs rB	R _a rA	B db	Q	V	- Tt	mat	dyn	stat	Sp	rmax_	r	Eval.	Uopt Lopt	ł
~	Chooce units>	°C	bar	mls	kg/m3	mm	mPa s	mm	1	mm	mm		mm	mm	mm	mm	mm	name	×	×	Х	ł	ł	1	mm	1
7	sample	343	9.80665	8.01	11.46		0.003		TW30	500	90			6.6	30	14	5	316L	35.5308	173.403	23.17	0.80	1.14	×	390	Ri
~	sample	160	9.80665	8.078	680.85				TW20	255				6.6	30	14	5	316L	2.63584	17.4873	28.39	0.40	0.34	1		
7	sample	370	3.43233	90.099	654.57				TW10	84				6.6	30	18	7	316L	0.344	0.94811	80.00	0.40	0.43	×	75	RFB
	sample	370	3.43233	45.05	654.57				TW10	115				6.6	30	18	7	316L	0.79733	2.02335	80.00	0.40	0.37	×		F
	sample	465	167.694	8.493	510.68				TW10	255				6.6	30	16	5	316L	3.15619	14.3582	1.40	0.40	0.34	*		Т
	sample	370	3.43233	66.46	0.1				TW10	110				6.6	30	18	7	316L	1724.47	3043.66	80.00	0.80	0.48	*	130	Di
	sample	370	300	66.46	0.1				TW10	110				6.6	30	18	7	316L	1724.47	39.1631	0.92	0.80	0.48	x	130	DPi
1	sample	315	3.43233	0.973	650.91				TW10	230				6.6	30	14	5	316L	582.546	1212.86	67.51	0.40	0.03	1		

Code/Name/Date

WIKA Thermowell Wake Frequency Calculations Results to PTC 19.3- TW2016

WIKA Thermowell Wake Frequency Calculations

Error Codes for PTC 19.3- TW2016

WIKA Part of your business

Capital letters indicate a critical value at the root of the thermowell root.

Stepped thermowells are calculated at the root and at the position of the step diameter. Note codes in small letters indicate that a critical value was reached at the position of the step diameter.

Message T: Temperature

- The requested temperature of the application exceeds the allowed temperature range of the selected material.
- Counteraction: Select a material suitable for higher temperatures

Message R: frequency ratio

A dangerous vibration of the thermowell that cannot be excluded.

Counteraction: The resonance frequency of the thermowell can be affected by every design element of a thermowell. The most effective way to reduce the frequency ratio is to increase the natural frequency of the thermowell by reducing the insertion length. In the case of failing

Message F: fatigue strength

The dynamic stress at design conditions caused by the vibration could reach a dangerous level. *Counteraction*: Increase the shank dimensions for root and tip to the direction of a stronger thermowell

Message B: static stress

The static stress at the root of the thermowell, caused by bending and pressure, could reach a dangerous level. *Counteraction*: Increase the shank dimensions for root and tip to the direction of a stronger thermowell.

Message P: pressure limit

The operation gauge pressure is higher than the pressure limit of the requested design. *Counteraction*: Increase the tip diameter and thickness of the thermowell.

Message X: tip and wall thickness

The tip thickness or the wall thickness is smaller than 3.0 mm For step style thermowells the wall thickness is outside the range of 3.0 to 6.0 mm *Counteraction*: Correct the design data into the given ranges

Message D: In-line (drag) resonance

For frequency ratio fw/fnc = 0.4 < x < 0.6 if Nsc < 2.5 or Re > 105 Counteraction: Increase the thermowell insertion length U up to fw/fnc = $0.6 \dots 0.8$ Or shorten the thermowell insertion length U up to fw/fnc < 0.4

Message N: pipe nozzle length (shielded length)

The insertion length U is smaller than the pipe nozzle length (=shielded length). This means, the thermowell shank is not immersed into the process. *Counteraction*: Increase the insertion length U or reduce the length of the pipe nozzle

Message M: Free material input

There is a mistake in the free material input (e.g. missed material values for youngs modul in mat2) 4Counteraction: Check the free material input table

WIKA Thermowell Wake Frequency Calculations

Options...Velocity Collars (interference fit)

Thermowell ScrutonWell® design

Code/Name/Date

WIKA

Part of your business

Thermowell ScrutonWell® design

WIKA

Part of your business

Sample for helical design in other technical applications:

The helical design is state of the art in different technical applications:

- Industrial chimneys
- Offshore platform
- Car antenna

How does the ScrutonWell® work?

- Kármán vortex street behind the thermowell stem
- This initiates the vibration of the stem in resonance
- The ScrutonWell® design avoids the formation of a Kármán vortex
- The vortex behind the thermowell stem gets diffuse
- The amplitude of the vortex can be reduced by more than 90%
- ► → NO RESONANCE NO VIBRATION

WIKA ScrutonWell® Advantages of the ScrutonWell® design for the customer

ScrutonWell installation

Installing a thermowell with ScrutonWell® design is identical to installing a comparable standard thermowell. No time-consuming and expensive rework at the nozzle or thermowell adjustment is required for assuring an interference fit, as is the case with the installation of a thermowell with support collar.

Even flange nozzles with an axial or angular displacement have no influence on the installation of a thermowell with ScrutonWell® design.

WIKA

Part of your business

Reduced response time

- Reduced response time in comparison to a standard thermowell stem design
- The increased surface by the helical strake structure reduces the response time of the thermometer

	WIKA
Part	of your business

Prüfprot	okoll Anspre or Measurement o	chzei f step re	tme	ssun	g							TM-	QM
Auftrag: order	Muster				Ku	nde:		Inten	n				
Typ: type	TW10 ScrutonV	Vell			E	-Nr.: rt no.							
Sensor: sensor	1xPt100 4-Leite	r											
Messung de	er Ansprechzeit i of response time in fo	n ström wing wa	nende ter acco	m Was	ser gen DIN EN 6	. DIN	EN (6075	14.3	.3			
Luft [:] 20,1 T _{air}	°C T _{Wasser} T _{water}	33,7 *	c	Fließg	eschw.: w velocity	0,3	m/s		Einta	nucht mion o	tiefe: septh	14	0 mr
Prüfling levice under ta	est	So	TW10 rutonV	Vell	Photo / d	Skizz	te			-	1	9	
Anzahl der number of seri	Messreihen es of measurement		3							1			
Ansprechzeit in		150	t 63	t 90							1		
response time	in seconds	39,35	50,01	97,34	·					- 1			
1	averag	ed step r	espons - 54	e accor	ding to DIP	EN 60	1751	6.5.2]				
0.5		+	-	-			÷						
0.7		/						1					
0,5	/					-							
0,4	//				+	+	Ť	÷	-				
0,3	/						1.	1					
0,1													
2		50 . 60	70	50	80 100	110	120	130	140	150	160	170	

Response time [s]	t50	t90
Standard thermowell	40.98 s	101.65 s
ScrutonWell®	39.35 s	97.34 s

Advantages of the ScrutonWell® design for the customer

- Damping of the oscillation can be reduced by more than 90% in comparison to a standard thermowell stem design.
- Easy, fast and trouble-free installation of the thermowell without rework
- Implementation of a globally established technical solution for thermowells
- Optimized response time of the thermometer compared to the conventional thermowell design through enlarged surface
- Eliminating the use of support collars and their disadvantages such as additional costs or rework
- Easy dismounting comparable to maintaining a standard thermowell
- The effectiveness of the ScrutonWell® design for thermowells has been verified by independent laboratory testing of TU Freiberg
- Dimensioning and calculation of the thermowells based on the static results of ASME PTC 19.3 TW-2016

WIKA ScrutonWell ® Technical data

- Versions
 - Solid-machined version with 3 strakes
 - · Solid-machined version with 3 filler rods, welded

Materials

- Stainless steel 304/304L, 316/316L
- Carbon steel A105
- Special alloys Monel 400 or Inconel 600
- · Other materials available on request
- Process connection
 - Flanges to all standards (e.g. ASME, API, EN, DIN, JIS, GOST)
 - Vanstone design for 1", 1 1/2" and 2" nozzle
 - Threaded connections with 1" NPT, 1 1/4" NPT, 1 1/2" NPT or 2" NPT on request
 - · Weld-in connection for socket or direct welded thermowells on request

WIKA ScrutonWell ® Technical data

ScrutonWell[®] (solid-machined) for flanged and Vanstone thermowells

Dimensions in mm (inch)	Outer diamter	Tip diameter	Strake height	Strake depth	Scruton length (max)	Insertion length (max)
	OD	V	Sh	Sw	SL	U
1" nozzle schedule 5 80	22 (0.866")	17 (0.669")	2.5 (0.098")	2.5 (0.098")	305 mm (12")	610 mm (24")
1 1/2" nozzle schedule 5 160	25 (0.984")	20 (0.787")	2.5 (0.098")	2.5 (0.098")	305 mm (12")	610 mm (24")
2" nozzle schedule 5 160	25 (0.984")	20 (0.787")	2.5 (0.098")	2.5 (0.098")	305 mm (12")	610 mm (24")

ScrutonWell® (welded design) for flanged and Vanstone thermowells

Dimensions in mm (inch)	Outer diameter (approx.)	Tip diameter	Rod diameter	Scruton length (max)	Insertion length (max)
	OD	V	R	SL	U
1" nozzle schedule 5 80	22 (0.866")	17 (0.669")	2.4 (0.094")	800 mm (31.5")	1,000 mm (39")
1 1/2" nozzle schedule 5 160	25 (0.984")	20 (0.787")	2.4 (0.094")	800 mm (31.5")	1,000 mm (39")
2" nozzle schedule 5 160	25 (0.984")	20 (0.787")	2.4 (0.094")	800 mm (31.5")	1,000 mm (39")

pitch angle $\alpha = 58^{\circ}$

WIKA ScrutonWell® How to define the Scrutonwell length ?

Insertion Length (U-dim)

- Where possible use customer original specifications
- When not specified use a general rule of 1/3 to 1/2 of the pipe ID + nozzle projection

Strake Length (SL)

Minimum length = U-dim - nozzle projection

WIKA

Stress calculation

Calculation of ScrutonWell® design based on ASME PTC 19.3 TW-2016

- Maximum permissible pressure load with original stem dimensions
- Maximum permissible bending load with modified stem dimensions
- The dynamic part of the thermowell calculation is not calculated, as it does not fall within ASME PTC 19.3 TW-2010 scope. Based on an ASME article the damping of the oscillation is reduced by more than 90% when helical strakes are used. *"Helical strakes in suppressing vortex-induced vibrations" (ASME report 11/2011 Vol. 113).*

Chaire 1		

Customer:					
Project					
Red Mar.					
Sens					
Date					
Tagnanian					
Process data					
Temperature				1	
Presente				-	
Max. rotatly	*			-	
and density				ages)	
The shares in	-		_	-	
Standard Income	1.2			-	
Reads inner dameter	ND			-	
Terrorell Mit					
WINA Parmonal model		TW10 Scrater/Rel II			
Donalar Well-B vendore		build reachined			
insertion length			-	-	
Rod radius at A	· .		4.6	-	
Box dander			4.4	-	
Rod danieler	- 0		34	-	
Tip diameter	N.		18	-	
Tip Inchases	n		4.4	-	
TW material			88 710		
Length of Scrubonital II			250	-	
Holght of the strainer			1	-	
which of the situation			2	100	
Bulk result by ABRE PT	G 18.2 TV	2010 sals alation methods			
					000000
Safety banding	-	CALDEARD TALED		-1	
20203040220					
and becau		CALDUATION FREED	_	-	
and the Party of Part				-	-
and the second second				_	_

Sendon Mall® calculation moults

Because of the special MAA Royator/Bell example with spin-ringer, the thermound is out of the scope of the AMM PTG 15.17M2014 Advances and subsci of the norther standing which is AMM PTG 15.17M2014 is not required. The special Royator/Bell example state is a despiny of the transverse multicline up to 16.15 and PTG. To be in the smitheline. Note a second Royator Bell example state is a despiny of the transverse multicline up to 16.15 and PTG. To be the indice smitheline.

VEX.1 as many networked dense is calculated a procedure contractor in the served device. Summary responsible for additional contractor definition and the served device of the

WIKA ScrutonWell ® Type testing summary

Report on the High-speed visualization of flow structure resonance of thermocouple wells

High-speed visualization video (click on the picture to start the video):
BackLit methode (Left: standard / Right: ScrutonWell®)

Institute for Mechanics and Fluiddynamics Technical University of Freiberg

> Humberto Chaves Franziska Hegner Laura Kamps Mario Köhler Stefan Ostmann Benjamin Ponitz

> > Freiberg, July 2014

