Operations Technology Evolution

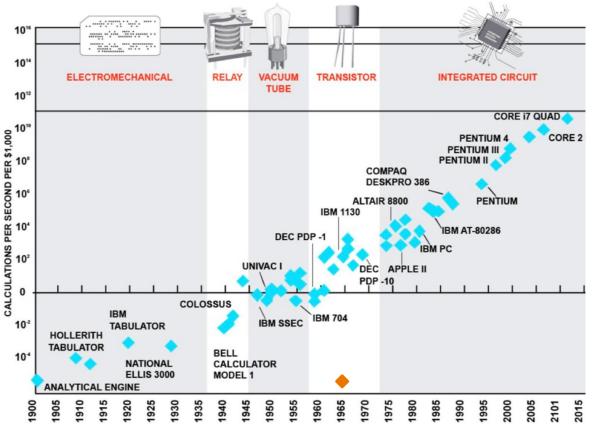
WILLOWGLEN SYSTEMS

InstMC Herts Section September 27, 2023

1 A long long time ago ...

2 The big merge (IoT & IIoT)

The future ...


5

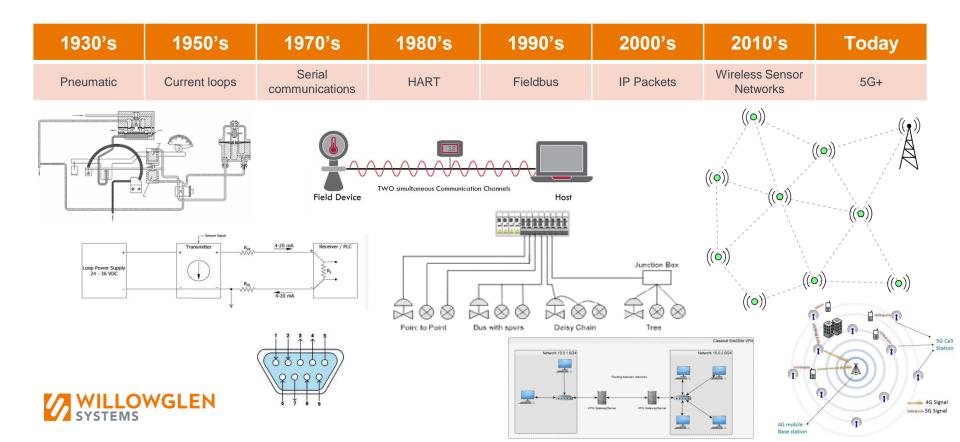
Historical Perspectives

115 years of Moore's Law

- Moore's law was
 "published" in 1968
 - number of transistors in a dense integrated circuit (IC) doubles about every two years.

Source Flickr https://www.flickr.com/photos/jurvetson/25046013104

WILLOWGLEN


SYSTEMS

Moore's Law trend continues

Source: https://www.unite.ai/moores-law/

Generations of Industrial Field Connectivity

Generations of Control Systems

	1960	1980	1990	2000 2	020
	1 st Gen Monolithic	2 nd Gen Distributed	3 rd Gen Networked	4 th Gen Web based	5 th Gen Adaptable
Changes	 Availability of radio modems Affordable Mainframe computers RTUs become feasible 	 Availability of LAN & WAN using telecom Increased bandwidth Adoption of PC-based system Software for business practice 		 Acceptance of the Internet for business Availability of browser-based technology Acceptable COTS hardware / infrastructure Cybersecurity awareness 	?
Needs	 Networked Communications Centralized Monitoring 	 Networked communications Centralized control 	 Back office connectivity Operator Interface & Human Factors 	 Communications over multiple networks Concurrent operators Cybersecurity support 	?
Characteristics	 Local data aggregation Long distance data transmission Centralized HMI Remote shutdown capability 	 Analog and discrete inputs an outputs Ability to change control settings Fault-tolerant servers HMI from a server database 	 Data Historians Ethernet-based data transmission Graphical interfaces Fault tolerance / redundancy 	 Standardized network communications Encrypted data transmission Central authentication Web based interface(s) 	?

Impact of CoTS & Packet Power

Control Systems — Evolution or Revolution?

1970 to Today

- 1. PLC/RTU
- 2. Hardware defined
- 3. System point minimization
- 4. Significant manual effort to change
- Operational stability via the 'no touch rule"
- 6. Security through isolation

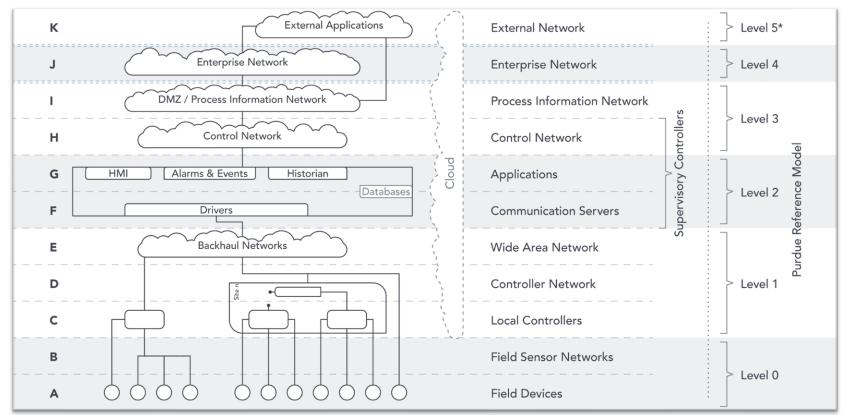
Expensive and prohibitive to make changes

The Future

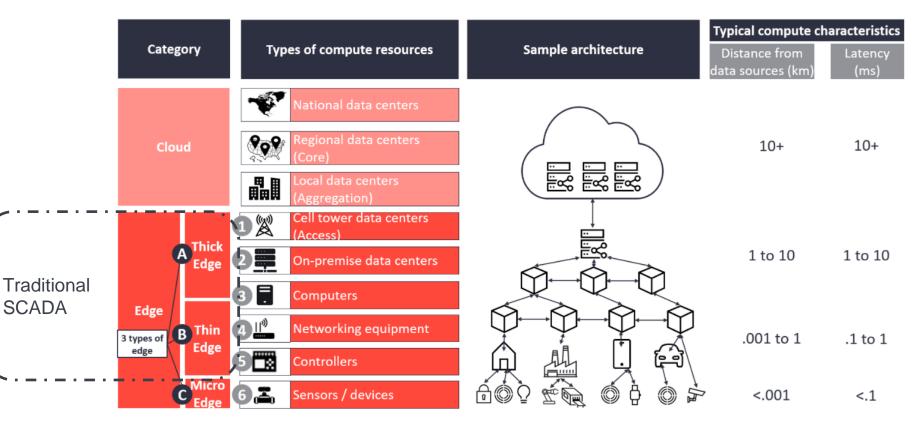
- 1. Self-configuring low cost edge devices
- 2. Software defined functionality
- 3. Orders of magnitude more points
- 4. Ad hoc device addition
- 5. Operational stability via high availability methods
- 6. End-to-end integration plant floor to cloud with integrated security

Incremental improvements or changes with minimal effort

Business Integration and Alignment


- Plant floor/Field to cloud/customer
- Integration with business systems
- Monetization of data inventory, integration with back ends
- Integration of disparate systems
- IoT / IIoT enabler

NGLEN



ISA-112 SCADA Architecture

Edge Components

Source: IoT Analytics Research 2020, https://iot-analytics.com/iot-edge-computing-what-it-is-and-how-it-is-becoming-more-intelligent/

.

lloT is ...

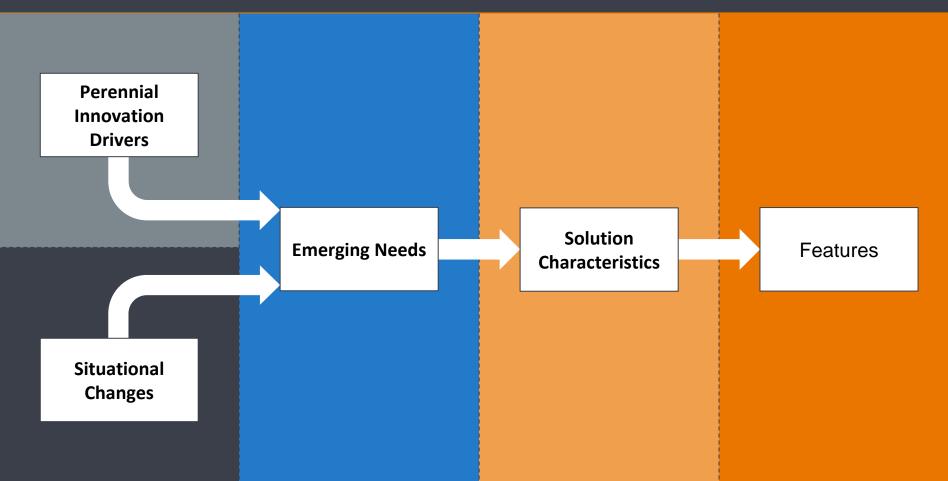
- Infrastructure of interconnected entities, people, systems and information resources together with services which processes and reacts to information from the physical world and virtual world (IEC definition)
- A concept where components are connected via a computer network and where one or more of those components interact with the physical world (Industrial Internet Consortium)
- Interconnected sensors, instruments, and other devices networked together with computers' industrial applications, (Wikipedia)

Common Keywords

- Field devices
- Networked
- Interact with physical world

Digital Twin as another part of data driven future

- Digital Twin model verification through multiple data streams
 - o Operational
 - o Diagnostic
 - o Position



Control System Evolution Continues

Methodology

Perennial Innovation Drivers

These are the key innovation drivers common across all generations of control technologies.

- Maximizing System Reliability (no unscheduled downtime)
 - Affects profits for commercial operations (pipelines, etc.)
 - Affects user satisfaction for public operators (metro rail, etc.)
- Minimizing Operational costs
- Minimizing Capital expenditures
- Minimizing Risk
- Expansion of Service
- Competitive pressures

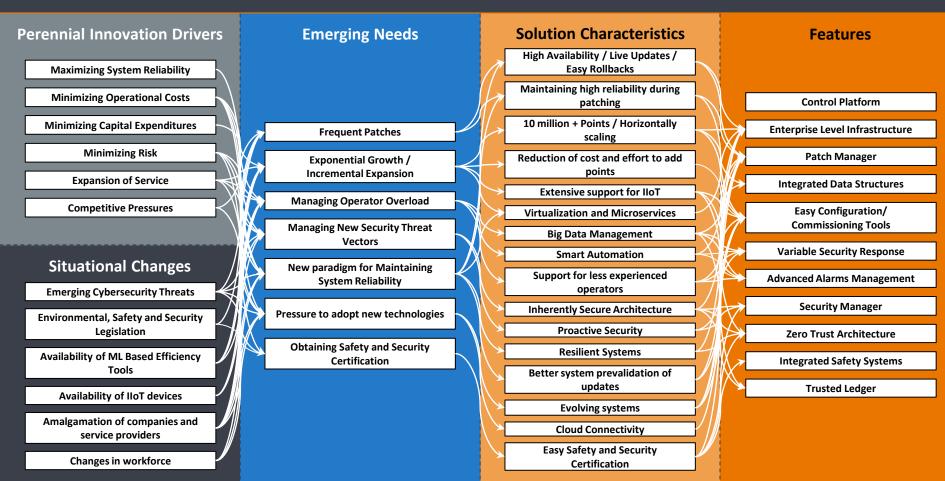
Impediments to change

• Risk Management

- Impact of something going wrong is significantly higher in OT environment
- Proven in Use
 - Show it working elsewhere first
- Knowledge
 - Understand the underlying technology

5th Generation Situational Changes

These are the key situational changes that are triggering the 5th generational changes.


- Emerging Cybersecurity Threats
- Environmental, Safety and Security Legislation
- Availability of ML-Based Efficiency Tools
- Availability of IIoT devices
- Amalgamation of companies and service providers
- Changes in workforce

5th Generation Emerging Needs

These are the emerging customer needs created by the Perennial Innovation Drivers and the 5th gen Situational Changes.

- Frequent Patches
- Exponential Growth / Incremental Expansion
- Managing Operator Overload
- Managing New Security Threat Vectors
- New paradigm for Maintaining System Reliability
- Pressure to adopt new technologies
- Obtaining Safety and Security Certification


Fifth Gen Emerging Needs

The future ...

5th Generation SCADA as OT Orchestrator

Q&A

ian.verhappen@willowglensystems.com